Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue.

نویسندگان

  • Anna Roubtsova
  • Mercedes Nancy Munkonda
  • Zuhier Awan
  • Jadwiga Marcinkiewicz
  • Ann Chamberland
  • Claude Lazure
  • Katherine Cianflone
  • Nabil G Seidah
  • Annik Prat
چکیده

OBJECTIVE Proprotein convertase subtilisin/kexin 9 (PCSK9) promotes the degradation of the low-density lipoprotein receptor (LDLR), and its gene is the third locus implicated in familial hypercholesterolemia. Herein, we investigated the role of PCSK9 in adipose tissue metabolism. METHODS AND RESULTS At 6 months of age, Pcsk9(-/-) mice accumulated ≈80% more visceral adipose tissue than wild-type mice. This was associated with adipocyte hypertrophy and increased in vivo fatty acid uptake and ex vivo triglyceride synthesis. Moreover, adipocyte hypertrophy was also observed in Pcsk9(-/-) Ldlr(-/-) mice, indicating that the LDLR is not implicated. Rather, we show here by immunohistochemistry that Pcsk9(-/-) males and females exhibit 4- and ≈ 40-fold higher cell surface levels of very-low-density lipoprotein receptor (VLDLR) in perigonadal depots, respectively. Expression of PCSK9 in the liver of Pcsk9(-/-) females reestablished both circulating PCSK9 and normal VLDLR levels. In contrast, specific inactivation of PCSK9 in the liver of wild-type females led to ≈ 50-fold higher levels of perigonadal VLDLR. CONCLUSIONS In vivo, endogenous PCSK9 regulates VLDLR protein levels in adipose tissue. This regulation is achieved by circulating PCSK9 that originates entirely in the liver. PCSK9 is thus pivotal in fat metabolism: it maintains high circulating cholesterol levels via hepatic LDLR degradation, but it also limits visceral adipogenesis likely via adipose VLDLR regulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PCSK9 deficiency unmasks a sex- and tissue-specific subcellular distribution of the LDL and VLDL receptors in mice.

Proprotein convertase subtilisin kexin type 9 (PCSK9), the last member of the family of Proprotein Convertases related to Subtilisin and Kexin, regulates LDL-cholesterol by promoting the endosomal/lysosomal degradation of the LDL receptor (LDLR). Herein, we show that the LDLR cell surface levels dramatically increase in the liver and pancreatic islets of PCSK9 KO male but not female mice. In co...

متن کامل

Fenofibrate treatment increases human serum proprotein convertase subtilisin kexin type 9 levels.

Over the past several years, proprotein convertase subtilisin kexin type 9 (PCSK9) has gained significant attention as a key regulator of serum LDL-cholesterol (LDL-C) levels. In humans, gain-of-function mutations in PCSK9 cause a form of familial hypercholesterolemia, whereas loss-of-function mutations result in significantly decreased LDL-C and cardiovascular risk. Our laboratory was the firs...

متن کامل

PCSK9 Induces CD36 Degradation and Affects Long-Chain Fatty Acid Uptake and Triglyceride Metabolism in Adipocytes and in Mouse Liver.

OBJECTIVE Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes the degradation of the low-density lipoprotein receptor thereby elevating plasma low-density lipoprotein cholesterol levels and the risk of coronary heart disease. Thus, the use of PCSK9 inhibitors holds great promise to prevent heart disease. Previous work found that PCSK9 is involved in triglyceride metabolism, independe...

متن کامل

Characterization of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Trafficking Reveals a Novel Lysosomal Targeting Mechanism via Amyloid Precursor-like Protein 2 (APLP2)

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates low density lipoprotein receptor protein levels by diverting it to lysosomes. Monoclonal antibody therapeutics aimed to neutralize PCSK9 have been shown to successfully lower serum LDL levels; however, we previously found that such therapeutic antibodies are subject to PCSK9-mediated clearance. In this study, we discovered that PCS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 31 4  شماره 

صفحات  -

تاریخ انتشار 2011